Feasibility of Multiple Examinations Using 68Ga-Labelled Collagelin Analogues: Organ Distribution in Rat for Extrapolation to Human Organ and Whole-Body Radiation Dosimetry
نویسندگان
چکیده
OBJECTIVES Fibrosis is involved in many chronic diseases. It affects the functionality of vital organs, such as liver, lung, heart and kidney. Two novel imaging agents for positron emission tomography (PET) imaging of fibrosis have previously pre-clinically demonstrated promising target binding and organ distribution characteristics. However, the relevant disease monitoring in the clinical setup would require multiple repetitive examinations per year. Thus, it is of paramount importance to investigate the absorbed doses and total effective doses and thus, the potential maximum number of examinations per year. METHODS Two cyclic peptide (c[CPGRVMHGLHLGDDEGPC]) analogues coupled via an ethylene glycol linker (EG₂) to either 2-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazonan-1-yl)acetic acid (NO2A-Col) or 4-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazacyclononan-1-yl)-5-(tert-butoxy)-5-oxopentanoic acid (NODAGA-Col) were labelled with (68)Ga. The resulting agents, [(68)Ga]Ga-NO2A-Col and [(68)Ga]Ga-NODAGA-Col, were administered in the tail vein of male and female Sprague-Dawley rats (N = 24). An ex vivo organ distribution study was performed at the 5-, 10-, 20-, 40-, 60- and 120-min time points. The resulting data were extrapolated for the estimation of human organ and total body absorbed and total effective doses using Organ Level Internal Dose Assessment Code software (OLINDA/EXM 1.1) assuming a similar organ distribution pattern between the species. Time-integrated radioactivity in each organ was calculated by trapezoidal integration followed by a single-exponential fit to the data points extrapolated to infinity. The resulting values were used for the residence time calculation. RESULTS Ex vivo organ distribution data revealed fast blood clearance and washout from most of the organs. Although the highest organ absorbed dose was found for kidneys (0.1 mGy/MBq), this organ was not the dose-limiting one and would allow for the administration of over 1460 MBq per year for both [(68)Ga]Ga-NO2A-Col and [(68)Ga]Ga-NODAGA-Col. The total effective dose was the limiting parameter with 0.0155/0.0156 (female/male) mSv/MBq and 0.0164/0.0158 (female/male) mSv/MBq, respectively, for [(68)Ga]Ga-NO2A-Col and [(68)Ga]Ga-NODAGA-Col. This corresponded to the total amount of radioactivity that could be administered per year of 643 and 621 MBq before reaching the annual limit of 10 mSv. Thus, up to six examinations would be possible. The residence time and organ absorbed doses in liver and spleen were higher for [(68)Ga]Ga-NODAGA-Col as compared to [(68)Ga]Ga-NO2A-Col. CONCLUSION The limiting parameter for the administered dose was the total effective dose that would allow for at least six examinations per year that might be sufficient for adequate disease monitoring in longitudinal studies and a routine clinical setup.
منابع مشابه
Development of Computed Tomography Head and Body Phantom for Organ Dosimetry
Introduction: Quality assurance in Computed tomography (CT) centers in developing countries are largely hindered by the unavailability of CT phantoms. The development of a local CT phantom for the measurement of organ radiation absorbed dose is therefore requisite. Material and Methods: Local CT phantoms were designed to meet the standard criteria of 32 cm diameter for body, 16 cm diameter for...
متن کاملPreliminary Dosimetry Study of 67Ga-AATS for Human Based on Biodistribution Data in Rats
Introduction Gallium-67 (67Ga) has been used as a radionuclide for imaging a variety of solid tumors since 1969. Since then use of various gallium-based radiotracers has been reported. Recently, 67Ga-labeled acetylacetate bis(thiosemicarbazones) (67Ga-AATS) complex with significant tumor accumulation and fast blood clearance has been employed. Materials and Methods In this study, the absorbed d...
متن کاملEvaluation of Radiation Exposure to Staff and Environment Dose from [18F]-FDG in PET/CT and Cyclotron Center using Thermoluminescent Dosimetry
Background: PET/CT imaging using [18F]-FDG is utilized in clinical oncology for tumor detecting, staging and responding to therapy procedures. Essential consideration must be taken for radiation staff due to high gamma radiation in PET/CT and cyclotron center. The aim of this study was to assess the staff exposure regarding whole body and organ dose and to evaluate environment dose in PET/CT an...
متن کاملFirst in-human radiation dosimetry of 68Ga-NODAGA-RGDyK
BACKGROUND Integrin-targeting radiopharmaceuticals have potential broad applications, spanning from cancer theranostics to cardiovascular diseases. We have previously reported preclinical dosimetry results of 68Ga-NODAGA-RGDyK in mice. This study presents the first human dosimetry of 68Ga-NODAGA-RGDyK in the five consecutive patients included in a clinical imaging protocol of carotid atheroscle...
متن کاملDevelopment of Prototype Iranian male pelvic phantom for internal dosimetry
Introduction: Existing phantoms have been constructed based on Caucasian, non-Caucasian and race-specific datasets. According to previous studies made efforts to present Korean- specific phantoms and Chinese female phantom based on CVH dataset due to compare the resulting internal dosimetry with the Caucasian based data showed possible racial difference in human anatomy between ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2016